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ABSTRACT 

We prove that the Beth definability theorem fails for a comprehensive class 
of first-order logics with cardinality quantifiers. In particular, we give a 
counterexample to Beth's theorem for L(Q), which is finitary first-order 
logic (with identity) augmented with the quantifier "there exists uncountably 
many". 

0. Introduction 

The Beth definability theorem is a basic theorem about L-finitary predicate 

calculus with identity. It asserts the natural closure condition on a logic: that 

implicit definitions made in the logic can be replaced by explicit ones. For which 

natural logics extending L that are currently under investigation, does Beth's 

theorem hold? 

Barwise [1] shows that Beth's theorem holds for the first-order logic based on 

any admissible subset of HC. (Actually the Craig interpolation theorem is proved; 

any logic obeying Craig's theorem also obeys Beth's.) Gregory [3], using results 

of Morley, proves that Beth's theorem fails for any logic betweenSe~,2o ~ and 5coco ,. 

Malitz [6] proves that Beth's theorem fails for any logic between ~,i~,,  

and ~ o  oo. 

This paper is devoted to counterexamples for Beth's theorem in first order 

logics based on cardinality quantifiers.For each ordinal a, let L(Q~) be finitary first 

order logic with id mtity and the additional quantifier (Q~x) with the interpretation 

"there are at least r many".  Let L(Q) be finitary first order logic with identity 
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and the additional quantifier (Qx) with the interpretation "there are as many 

x as there are elements in the model".  Let L-(Q~), L-(Q) respectively be the 

same as L(Q~), L(Q) except that identity is not allowed. 

Yasuhara [7] shows that Beth's theorem holds for L-(Q) and for L-(Q~), pro- 

vided~o is singular.tOnce again, this is proved via Craig's theorem. 

We prove that Beth's theorem fails for L(Q), and for every L(Q~). We also prove 

that for regular o~, Beth's theorem fails for L-(Q~). 
We present out results in a very general form. We define the infinitary first order 

logic L* which encompasses any first order logic with cardinal quantifiers ever 

presented. We prove that Beth's theorem fails for any logic between (1)L(Q) and 

L *, (2) L(Q~) and L *, for any ct > 0, and (3) L-(Q~) and L*, if co~ is regular, ~ > 0. 

The hypothesis of Beth's theorem is that every structure has at most one expan- 

sion satisfying ~b. Let us call "weak Beth's theorem" the statement obtained by 

replacing the hypothesis of Beth's theorem with the stronger hypothesis: every 

structure has exactly one expansion satisfying ~b. Little is known about weak 

Beth's theorem. Does it hold in L~,~ or L(QI)? 

1. Back and forth through L* 

Below, we will carefully define the logic L* which encompasses any proposed 

first order logic with cardinality quantifiers. L* will be the least logic containing 

the atomic formulae of L, closed under ~ ,  S, and each Q~, and most crucially: 

the conjunction of any class of formulae of L* of size at most that of V = class of 

all sets, is a formula of L* (provided there are at most finitely many free variables). 

We first define some concepts underlying the semantics of all logics discussed 

in this paper. We use the n-ary relation symbol Rm ~, 0 < n, m. Since we are present- 

ing counterexamples, nothing is lost by omitting constant and function symbols. 

We use = for identity. 

A signature is a finite set of relation symbols. A a-structure consists of a nonempty 

domain D together with art assignment to each n-ary relation symbol in a, an n-ary 

relation on D. We require that D be a set (as opposed to a class). 

To define L*, first assign (in a one-one fashion) a set which is not a sequence, 

to each atomic formula of L and to each of the signs &, ~ ,Sx,, Q~xn, 1 < n, 
an ordinal (in V). Let [y be the set associated with y. 

Actually, Yasuhara deals only with infinite models. The counter examples in this paper 
will remain countzrexamples if finite models are likewise omitted from consideration. 
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A tree will be a class of nortempty finite sequences of sets, closed under initial 

segments. The formulae of L* will be certain well-founded trees. If s is a finite 

sequence and x a set, let xs be the sequence obtained by appending x at the front 

of s, and let ( x )  be the sequence of length 1 consisting of x. Let (x ,y)  = x(y) .  
We now inductively define the collection of formulae of L*, as well as their free 

variables. The free variables of a collection of formulae are just the free variables 

of its elements. 

If ~b is an atomic formula of L, then {(1~1 >~ is a formula of L*. This formula is 

written ~b. The free variables of ~b are exactly the variables occurring in q~ in the 

sense of L. 

If ~b is a formula of L ' then  so is u This formula is 

written ( ~  ~b). The free variables of ( ,,~ ~b) are exactly those of ~b. 

If q~ is a formula, then u{13x.l},and u 

{]Q~,x,, l} are formulae of L*. These formulae are written (3x,) (q~), (Q,,x,) (~) resp- 

ectively. The free variables ofeither formula are exactly the free variables of q~ 

minus x,. 

If  F is a partial function from V into formulae of L*, then {1 1 (xs  :s F(x , 
x e Dom (F)} u { (l &l,x) :x e Dom (F)} td {( 18.1 >) is a formula of L*, provided 

there are at most finitely many free variables in Rng (F). This formula is written 

&(F). The free variables of &(F) are exactly the free variables of Rng (F). 

The semantics of L* is defined in the straightforward way, where ,.~ is negation, 

& is conjunction, qx, means "there is an xn", and Q~x,, means "there are at least 

to, many xn". 

In this paper, the logic L(Q~) has the same syntax as the L(Q) of Keisler [4],except 

with Q~ in place of Q ; Q~,x,, is interpreted as "there are at least ~o~ many x,,". 
The logic L(Q) here will have the same syntax as the L(Q) of Keisler [4]; 

Qx,, is interpreted as "there are just as many x~ as there are elements in the 

model".  Take L-(Q), L-(Q~) to be L(Q), L(Q~,) respectively, without equality. 

It is clear that L(Q) and each L(Q,,,) are sublogics of L*, in the sense that every 

elementary class of the former is an elementary class of the latter. 

We use - for elementary equivalence in L*. We will use only the three relation 

symbols: e for R02, r for R 2 and p for Ro ~. We will use only the two signatures 

{e,r} and (e,r,p}. We write structures of the first signature as (D,E,R), and of the 

second as (D,E,R,P). 
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Let L'  be logic between L without identity, and L*.* Beth's theorem for K,  

in the signatures used here, states that for every sentence ~b of L' in signature 

{e,r,p}, if for every (D,E,R) there is at most one (D,E,R,P) ~ q~, then there is a 

sentence ~ of L '  and a formula 0 with one free variable x I of L', both in signature 

{e,r}, such that ~ ( ~ ' & ( ~ ' x l ) ( p ( x l ) ~ O ) )  is valid. 

We will make use of the fact that if Beth's theorem were true for such an L' 

then for every sentence q~ of L '  in signature {e,r,p,} if for every (D,E,R) there is 

at most one (D,E,R,P) ~ 4, then {(D,E,R): there is a (D,E,R,P) ~ q~} is an elemen- 

tary class in L*. 

In order to obtain the desired results mentioned in the introduction, it therefore 

suffices to find sentences q~, such that 

A) ~bo is a sentence in L(Q); if co, is singular then qS~ is a sentence in L(Q~); 

if ~o, is regular, ~ > 0, then ~b, is a sentence in L-(Q,) 

B) Each ~b, is of signature {e,r,p}, and for each (D,E,R)there is at most one 

(D,E,R,P) ~ ~b~ 

C) Each {(D,E,R): there is a (D,E,R,P) ~ ~b~} is not an elementary class in L*. 

Lipner 1-5] and Brown 1-2] developed back and forth criteria for elementary equiva- 

lence in languages with cardinality quantifiers. 

A straightforward adaptation of their work will yield the back and forth crite- 

rion f o r -  given below. 

Let M, N be two structures in the same signature. A quasi-isomorphism from 

M onto N is a set K of finite partial isomorphisms from M into N that is closed 

under restrictions and is nonempty. If  K is a quasi-isomorphism, then for each 

f ~ K w e  define the many-valued functions K )  : M ~ N and K~- : N ~ M by: 

K}(x) = y i f f f  U {(x,y)} E K, K~(x) = y i f f f  L) {(y,x)} E K. 

LEMMA 1. Let M, N be structures in the same signature. Then 

M - N if and only if there exists a quasi-isomorphism K such that for all f e  K, 

the images of K}, K~ on any x c  M, y c N respectively have cardinality at 

least that of x, y respectively. 

2. The sentences 

A double equivalence relation (2 ,-, r) is defined here as a structure (D, E,R) 

that (1) E is an equivalence relation on D, (2) (R(a,b) & E(b,c)) --, R(a,c), and (3) 

1" Strictly speaking, assume that every formula of L' is a formula of L*. Of course, a syntax 
free treatment can be given. 
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(3b) (R(a,b)). Thus a 2 ~ r is a (D,E,R) such that E is an equivalence relation on/2 

and R associates to each a ~ D a nonempty set of equivalertce classes under E. 

Let (D,E,R) be a 2 ~ r. The 0-small elements of (D,E,R) are those x e D such 

that E divides (a:R(x, a)) into fewer equivalence classes than there are elements 

in D. The ,-small elements, a > 0 ,  of  (D,E,R) are those x e D  such that E 

divides (a: R(x,a))into < co, equivalence classes. The s-large elements are just 

those elements that are not a-small. 

Let a = 0 or co~ singular. We say that (D, E, R) is an a-special 2 ~ r if and only 

if(D,E,R) is a 2~  r such that every equivalence class associated by R to an a-small 

x ~ D has exactly one a-small member, and every equivalence class associated 

by R to an ,-large x a D has exactly one a-large member. 

For regular co~,a > 0, we say that (D,E,R) is s-special if and only if 

(D, E, R) is a 2 ~ r such that every equivalence class associated by R to an ,-small 

x ~ D has at least one, but < co~ a-small members, and every equivalence class 

associated by R to an a-large x ~ D has at least one, but < co~ a-large members. 

LEMMA 2. For every a > 0 there is a sentence ~ of  signature {e,r,p} 

such that (a) (D,E,R,P) ~ ~ iff (D,E,R) is an s-special 2 ..~ r, and P(x) iff 

x is a-small in (D,E,R),  and (b) ifo: = 0 then ~ is in L(Q); /fo)~ is singular 

then c~ is in L(Q~); otherwise ~ is in L-(Q~). Thus (A) and (B) of Section 1 

are completed. 

PROOF. Define ~o to be the conjunction of the following: (i) axioms saying 

that (D,E, R) is a 2 ~ r ,  (ii) p(x) -~ (Vy) (r(x, y) ~ (3 !z) (e(y, z) & p(z))), 

(iii) 7p(x)  -~ (Vy)(r(x,y) ~ (~!z)(e(y,z)& 7p(z))) ,  (iv) p(x) ~ 7(Qy)(p(y) & 

r(x,y)), and (v) 7p(x)  - ,  (Qy)(Tp(y)  & r(x,y)). 

Suppose (D, E, R) is a 0-special 2 ~ r with P(x) iff x is 0-small in (D, E, R). Then 

obviously (D,E,R, P) ~ (i), (ii), (iii), and (iv) and (v) hold since E divides (y: r(x, y)} 

into fewer equivalence classes than there are elements in D if and only if x is 

0-small in (D,E, R). 

Conversely, suppose (D,E,R,P) ~ ~b o. Then (D,E,R) is a 2 ~ r .  It is clear 

from (ii) and (iv) that P(x) implies x is 0-small. It is equally clear from (iii) and (v) 

that 7P(x )  implies x is 0-large. Hence P(x) iff is 0-small in (D,E,R). Upon 

rereading (ii) and (iii), we see that (D, E, R) is 0-special. 

Let ~b,, for co, singular, be the same as qSo except that Q is replaced by Q,. 

Then precisely the same argument as above establishes that (D,E, R, P) ~ qS, if 
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and only if (D,E,R) is an a-special 2 --, r and P(x) iff x is a-small in (D,E,R). 

Note that because of the exclamation marks in (ii) and (iii), we are using 

equality in ~b~ for a = 0 or o), singular. Define ~b~ for a > 0, co~ regular, as the 

conjunction of the following: (1) Axioms saying that (D,E,R) is a 2 ~ r, (2) 

p(x) --* (Vy) (r(x, y) ~ -7 (Q~z) (e(y, z) & p(z))), (3) p(x) ~ (Vy) (r(x, y) 

(3z)(e(y,z) & p(z))), (4) 7p(x)--*(Vy)(r(x,y) ~ 7(Q~z)(e(y,z) & p(z))), 

(5) 7p(x)--* (gy)(r(x,y) -* (3z)(e(y,z) & "np(z))), (6) p(x) ~ 7(Q~y)(p(y) 

& r(x,y)), and (7) 7p(x)  ~ (O~y)('Tp(y) & r(x,y)). 

Suppose (D, E, R) is an a-special 2 ~ r with P(x) iff x is a-smaU in (D, E, R), 

a > 13, o9~ regular. Obviously (D,E,R,P) ~ (1), (2), (3), (4), and (5). By regularity 

of e)~, we have (D,E, R, P) ~ (6) and (7). 

Conversely, suppose (D,E, R, P) ~ qS~, a > 0, co~ regular. Then (D,E, R) is a 

2 ~ r. It is clear from (3) and (6) that P(x) implies x is a-small. It is clear from 

(4) and (7) and the regularity of o9~, that 7P(x)  implies x is a-large. Hence P(x) 

iffx is a-small. Upon rereading (2), (3), (4), and (5), we see that (D, E, R) is a-special. 

3.  e - N o r m a l  2 ~ r ' s  

For a > f3, take D~ to be the set of all finite sequences of elements of cos. Take 

Do =Dl .  Take R~to be the binary relation on D~ given by R~( f ,g )~  (3he o~) 

(3/~)(g = f U  {(n,/?)}). An e-normal 2,-, r is a 2 ~ r of the form (D,,E,R~), 

where E is an equivalence relation on D, satisfying (i) E(f,g) ~ (3h)(R(h,f) 

& R(h,#)), and (ii) E divides each {0: (3h)(R(h,f)&R(h, 0))} into infinitely 

many equivalence classes, each of power ~ (power o91 if a = 0). 

LEMMA 3. For each a, any two a-normal 2,,~ r's are = .  

PROOF. We use the back and forth criterion of Lemma 1. Let a > 0. Let 

(D~,Eo, R~),(D~,EI,R~) be two a-normal 2 ~ r's. We wish to prove (D~,Eo, R~) 

- (D~, El, R~). To do this, we first let K § be the set of all finite nonempty partial 

isomorphisms p: (D~,Eo, R~)~ (D~,E1,R~) such that ( i ) f  and p(f) have the 

same domain, and (ii) Dom(p) is closed under restrictions. 

We first prove a very strong back and forth property for K § . We show that 

if p ~ K § , f e  D~ - Dom(p). then there are o9~ many f *  such that for some 

p* e K + extending p, p*(f) = f* .  
Let p e K § f E  D , -  Dom(p). Choose h to be the smallest restriction of f 

not in Dom (p). 
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Case 1. For some g ~ Dom(p), Eo(h,g ). Let f *  r Rng(p), El(f*,p(g)) .  There 

are o9~ such f* .  For each choice of f *  choose p*e K + extending p,  with 

p*(h) -- f * .  
Case 2. For no g ~ Dom(p) is Eo(h, g). Let R~(h o, h). Chooser* with R~(ho,f*) 

and for no g e Rng(p) is Et(h,g ) . There are co~ such f *  by clauses (iii) and (ii 

in the definitions of K + , e-normal 2 ~ r re;p~:tively. For each choice o f f *  

choose p* ~ K  + extending p, with p*(h)= f * .  

Now let K be the set of all finite partial isomorphisms from (D~,Eo,R~) into 

(D~,EI,R~) which have art extension in K +. It is clear that K is a quasi-isomorph- 

ism.Let p e K, x c D~. Let p+ be any extension of p lying in K +. If  not x c Dora 

(p+), then by what we have proved about K +, clearly the image of Kp 1 un:ler x 

has power co~. If  x c Dom (p+), then since p+ is one-one, clearly the image 

of K~ under x has power at least that of x. 

By symmetry, we have shown the existence of a K satisfying Lemma 1. This 

therefore concludes the proof of Lemma 3. 

We now just have to establish (C) of Section 1. 

LEMMA 4. For each a there is an a-normal 2..~ r that is not a-special. 

PROOF. For such a a-normal 2 ~ r, a > 0, choose an a-normal 2.~r,(D~,E,R~), 

such that E divides each {g: (3h)(R(h, f )& R(h,g))) into o9~ many equivalence 

classes. 

LF_MI~IA 5. For each a > 0 there is a function F : D ~ ( 0 , 1 }  satisfying 

(1) t ( f )  = 0 implies I {g: R~(f,g) & F(g) = 0} [ = co, and (2) F(f)  = 1 implies 

I{g:R~(f,g) & F(g) = 0} ] = I (g :R~(f,g) & f (g )  = 1}1 = co~. 

PROOF. The proof is a standard definition by recursion on the lengths (domains) 

of the elements of D~. 

LEMMA 6. For each a there is an a-normal 2 ..~ r which is a-special. 

PROOF. Let a > 0. Choose F as in Lemma 5. I f  F(f)  = 0 then define E on 

{g :R~(f,g)} so that {g:R~(f,g)) is divided into o9 equivalence classes under E, 

each of which is of power o9, and contains exactly one g with F(t)=0.  If  F(.f)= 1, 

then define E on (g :R~(f,g)} so that (g:R~(f,g)) is divided into o9~ equivalence 

classes under E, each of which is of power o9~ and contains exactly one g with 

= 1 .  
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LEr, IMA 7. For each o~, {(D,E,R):(D,E,R) is an o~-special 2 ~  r} is not an 

elementary class in L*. 

PRoof. It is obvious from Lemmas 3, 4, and 6. 

THEOREM. Beth's theorem fails for any logic between (1)L(Q) and L*, (2) 

L(Q~) and L *, any oe > O, and ( 3 ) L -(  Q~) and L *, ff  og~ is regular, ct > O. 

PROOF. By Lemmas 2 and 7, we have competed (A), (B), and (C) of Section 1. 

Hence, we are done. 
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